
D E E P N E U R A L N E T W O R K S
F O R YO U T U B E

R E C O M M E N DAT I O N S

Deep Neural Networks for YouTube Recommendations

Paul Covington, Jay Adams, Emre Sargin
Google

Mountain View, CA
{pcovington, jka, msargin}@google.com

ABSTRACT
YouTube represents one of the largest scale and most sophis-
ticated industrial recommendation systems in existence. In
this paper, we describe the system at a high level and fo-
cus on the dramatic performance improvements brought by
deep learning. The paper is split according to the classic
two-stage information retrieval dichotomy: first, we detail a
deep candidate generation model and then describe a sepa-
rate deep ranking model. We also provide practical lessons
and insights derived from designing, iterating and maintain-
ing a massive recommendation system with enormous user-
facing impact.

Keywords
recommender system; deep learning; scalability

1. INTRODUCTION
YouTube is the world’s largest platform for creating, shar-

ing and discovering video content. YouTube recommenda-
tions are responsible for helping more than a billion users
discover personalized content from an ever-growing corpus
of videos. In this paper we will focus on the immense im-
pact deep learning has recently had on the YouTube video
recommendations system. Figure 1 illustrates the recom-
mendations on the YouTube mobile app home.

Recommending YouTube videos is extremely challenging
from three major perspectives:

• Scale: Many existing recommendation algorithms proven
to work well on small problems fail to operate on our
scale. Highly specialized distributed learning algorithms
and efficient serving systems are essential for handling
YouTube’s massive user base and corpus.

• Freshness: YouTube has a very dynamic corpus with
many hours of video are uploaded per second. The
recommendation system should be responsive enough
to model newly uploaded content as well as the lat-
est actions taken by the user. Balancing new content

Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for third-party components of this work must be honored.
For all other uses, contact the owner/author(s).

RecSys ’16 September 15-19, 2016, Boston , MA, USA
c© 2016 Copyright held by the owner/author(s).

ACM ISBN 978-1-4503-4035-9/16/09.

DOI: http://dx.doi.org/10.1145/2959100.2959190

Figure 1: Recommendations displayed on YouTube
mobile app home.

with well-established videos can be understood from
an exploration/exploitation perspective.

• Noise: Historical user behavior on YouTube is inher-
ently difficult to predict due to sparsity and a vari-
ety of unobservable external factors. We rarely ob-
tain the ground truth of user satisfaction and instead
model noisy implicit feedback signals. Furthermore,
metadata associated with content is poorly structured
without a well defined ontology. Our algorithms need
to be robust to these particular characteristics of our
training data.

In conjugation with other product areas across Google,
YouTube has undergone a fundamental paradigm shift to-
wards using deep learning as a general-purpose solution for
nearly all learning problems. Our system is built on Google
Brain [4] which was recently open sourced as TensorFlow [1].
TensorFlow provides a flexible framework for experimenting
with various deep neural network architectures using large-
scale distributed training. Our models learn approximately
one billion parameters and are trained on hundreds of bil-
lions of examples.

In contrast to vast amount of research in matrix factoriza-

tion methods [19], there is relatively little work using deep
neural networks for recommendation systems. Neural net-
works are used for recommending news in [17], citations in
[8] and review ratings in [20]. Collaborative filtering is for-
mulated as a deep neural network in [22] and autoencoders
in [18]. Elkahky et al. used deep learning for cross domain
user modeling [5]. In a content-based setting, Burges et al.
used deep neural networks for music recommendation [21].

The paper is organized as follows: A brief system overview
is presented in Section 2. Section 3 describes the candidate
generation model in more detail, including how it is trained
and used to serve recommendations. Experimental results
will show how the model benefits from deep layers of hidden
units and additional heterogeneous signals. Section 4 details
the ranking model, including how classic logistic regression
is modified to train a model predicting expected watch time
(rather than click probability). Experimental results will
show that hidden layer depth is helpful as well in this situa-
tion. Finally, Section 5 presents our conclusions and lessons
learned.

2. SYSTEM OVERVIEW
The overall structure of our recommendation system is il-

lustrated in Figure 2. The system is comprised of two neural
networks: one for candidate generation and one for ranking.

The candidate generation network takes events from the
user’s YouTube activity history as input and retrieves a
small subset (hundreds) of videos from a large corpus. These
candidates are intended to be generally relevant to the user
with high precision. The candidate generation network only
provides broad personalization via collaborative filtering.
The similarity between users is expressed in terms of coarse
features such as IDs of video watches, search query tokens
and demographics.

Presenting a few “best” recommendations in a list requires
a fine-level representation to distinguish relative importance
among candidates with high recall. The ranking network
accomplishes this task by assigning a score to each video
according to a desired objective function using a rich set of
features describing the video and user. The highest scoring
videos are presented to the user, ranked by their score.

The two-stage approach to recommendation allows us to
make recommendations from a very large corpus (millions)
of videos while still being certain that the small number of
videos appearing on the device are personalized and engag-
ing for the user. Furthermore, this design enables blending
candidates generated by other sources, such as those de-
scribed in an earlier work [3].

During development, we make extensive use of offline met-
rics (precision, recall, ranking loss, etc.) to guide iterative
improvements to our system. However for the final deter-
mination of the effectiveness of an algorithm or model, we
rely on A/B testing via live experiments. In a live experi-
ment, we can measure subtle changes in click-through rate,
watch time, and many other metrics that measure user en-
gagement. This is important because live A/B results are
not always correlated with offline experiments.

3. CANDIDATE GENERATION
During candidate generation, the enormous YouTube cor-

pus is winnowed down to hundreds of videos that may be
relevant to the user. The predecessor to the recommender

candidate ranking

user history and context

generation
millions hundreds dozens

video
corpus

other candidate sources
video

features

Figure 2: Recommendation system architecture
demonstrating the “funnel” where candidate videos
are retrieved and ranked before presenting only a
few to the user.

described here was a matrix factorization approach trained
under rank loss [23]. Early iterations of our neural network
model mimicked this factorization behavior with shallow
networks that only embedded the user’s previous watches.
From this perspective, our approach can be viewed as a non-
linear generalization of factorization techniques.

3.1 Recommendation as Classification
We pose recommendation as extreme multiclass classifica-

tion where the prediction problem becomes accurately clas-
sifying a specific video watch wt at time t among millions
of videos i (classes) from a corpus V based on a user U and
context C,

P (wt = i|U,C) =
eviu∑

j∈V evju

where u ∈ RN represents a high-dimensional “embedding” of
the user, context pair and the vj ∈ RN represent embeddings
of each candidate video. In this setting, an embedding is
simply a mapping of sparse entities (individual videos, users
etc.) into a dense vector in RN . The task of the deep neural
network is to learn user embeddings u as a function of the
user’s history and context that are useful for discriminating
among videos with a softmax classifier.

Although explicit feedback mechanisms exist on YouTube
(thumbs up/down, in-product surveys, etc.) we use the im-
plicit feedback [16] of watches to train the model, where a
user completing a video is a positive example. This choice is
based on the orders of magnitude more implicit user history
available, allowing us to produce recommendations deep in
the tail where explicit feedback is extremely sparse.

Efficient Extreme Multiclass
To efficiently train such a model with millions of classes, we
rely on a technique to sample negative classes from the back-
ground distribution (“candidate sampling”) and then correct
for this sampling via importance weighting [10]. For each ex-
ample the cross-entropy loss is minimized for the true label
and the sampled negative classes. In practice several thou-
sand negatives are sampled, corresponding to more than 100
times speedup over traditional softmax. A popular alterna-
tive approach is hierarchical softmax [15], but we weren’t

able to achieve comparable accuracy. In hierarchical soft-
max, traversing each node in the tree involves discriminat-
ing between sets of classes that are often unrelated, making
the classification problem much more difficult and degrading
performance.

At serving time we need to compute the most likely N
classes (videos) in order to choose the top N to present
to the user. Scoring millions of items under a strict serv-
ing latency of tens of milliseconds requires an approximate
scoring scheme sublinear in the number of classes. Previous
systems at YouTube relied on hashing [24] and the classi-
fier described here uses a similar approach. Since calibrated
likelihoods from the softmax output layer are not needed
at serving time, the scoring problem reduces to a nearest
neighbor search in the dot product space for which general
purpose libraries can be used [12]. We found that A/B re-
sults were not particularly sensitive to the choice of nearest
neighbor search algorithm.

3.2 Model Architecture
Inspired by continuous bag of words language models [14],

we learn high dimensional embeddings for each video in a
fixed vocabulary and feed these embeddings into a feedfor-
ward neural network. A user’s watch history is represented
by a variable-length sequence of sparse video IDs which is
mapped to a dense vector representation via the embed-
dings. The network requires fixed-sized dense inputs and
simply averaging the embeddings performed best among sev-
eral strategies (sum, component-wise max, etc.). Impor-
tantly, the embeddings are learned jointly with all other
model parameters through normal gradient descent back-
propagation updates. Features are concatenated into a wide
first layer, followed by several layers of fully connected Rec-
tified Linear Units (ReLU) [6]. Figure 3 shows the general
network architecture with additional non-video watch fea-
tures described below.

3.3 Heterogeneous Signals
A key advantage of using deep neural networks as a gener-

alization of matrix factorization is that arbitrary continuous
and categorical features can be easily added to the model.
Search history is treated similarly to watch history - each
query is tokenized into unigrams and bigrams and each to-
ken is embedded. Once averaged, the user’s tokenized, em-
bedded queries represent a summarized dense search history.
Demographic features are important for providing priors so
that the recommendations behave reasonably for new users.
The user’s geographic region and device are embedded and
concatenated. Simple binary and continuous features such
as the user’s gender, logged-in state and age are input di-
rectly into the network as real values normalized to [0, 1].

“Example Age” Feature
Many hours worth of videos are uploaded each second to
YouTube. Recommending this recently uploaded (“fresh”)
content is extremely important for YouTube as a product.
We consistently observe that users prefer fresh content, though
not at the expense of relevance. In addition to the first-order
effect of simply recommending new videos that users want
to watch, there is a critical secondary phenomenon of boot-
strapping and propagating viral content [11].

Machine learning systems often exhibit an implicit bias
towards the past because they are trained to predict future

behavior from historical examples. The distribution of video
popularity is highly non-stationary but the multinomial dis-
tribution over the corpus produced by our recommender will
reflect the average watch likelihood in the training window
of several weeks. To correct for this, we feed the age of the
training example as a feature during training. At serving
time, this feature is set to zero (or slightly negative) to re-
flect that the model is making predictions at the very end
of the training window.

Figure 4 demonstrates the efficacy of this approach on an
arbitrarily chosen video [26].

−30 −20 −10 0 10 20 30 40

Days Since Upload

0.000

0.001

0.002

0.003

0.004

0.005

0.006

0.007

0.008

C
la

s
s
 P

ro
b
a
b
il
it

y

Baseline Model

With Example Age

Empirical Distribution

Figure 4: For a given video [26], the model trained
with example age as a feature is able to accurately
represent the upload time and time-dependant pop-
ularity observed in the data. Without the feature,
the model would predict approximately the average
likelihood over the training window.

3.4 Label and Context Selection
It is important to emphasize that recommendation often

involves solving a surrogate problem and transferring the
result to a particular context. A classic example is the as-
sumption that accurately predicting ratings leads to effective
movie recommendations [2]. We have found that the choice
of this surrogate learning problem has an outsized impor-
tance on performance in A/B testing but is very difficult to
measure with offline experiments.

Training examples are generated from all YouTube watches
(even those embedded on other sites) rather than just watches
on the recommendations we produce. Otherwise, it would
be very difficult for new content to surface and the recom-
mender would be overly biased towards exploitation. If users
are discovering videos through means other than our recom-
mendations, we want to be able to quickly propagate this
discovery to others via collaborative filtering. Another key
insight that improved live metrics was to generate a fixed
number of training examples per user, effectively weighting
our users equally in the loss function. This prevented a small
cohort of highly active users from dominating the loss.

Somewhat counter-intuitively, great care must be taken
to withhold information from the classifier in order to pre-
vent the model from exploiting the structure of the site and
overfitting the surrogate problem. Consider as an example a

user vector

video vectors

averageaverage

watch vector search vector

embedded search tokensembedded video watches

example age
gender

geographic
embedding

training
serving

ReLU

ReLU

ReLU

approx. top N

softmax

class probabilities

nearest neighbor
index

Figure 3: Deep candidate generation model architecture showing embedded sparse features concatenated with
dense features. Embeddings are averaged before concatenation to transform variable sized bags of sparse IDs
into fixed-width vectors suitable for input to the hidden layers. All hidden layers are fully connected. In
training, a cross-entropy loss is minimized with gradient descent on the output of the sampled softmax.
At serving, an approximate nearest neighbor lookup is performed to generate hundreds of candidate video
recommendations.

case in which the user has just issued a search query for“tay-
lor swift”. Since our problem is posed as predicting the next
watched video, a classifier given this information will predict
that the most likely videos to be watched are those which
appear on the corresponding search results page for “tay-
lor swift”. Unsurpisingly, reproducing the user’s last search
page as homepage recommendations performs very poorly.
By discarding sequence information and representing search
queries with an unordered bag of tokens, the classifier is no
longer directly aware of the origin of the label.

Natural consumption patterns of videos typically lead to
very asymmetric co-watch probabilities. Episodic series are
usually watched sequentially and users often discover artists
in a genre beginning with the most broadly popular before
focusing on smaller niches. We therefore found much better
performance predicting the user’s next watch, rather than
predicting a randomly held-out watch (Figure 5). Many col-
laborative filtering systems implicitly choose the labels and
context by holding out a random item and predicting it from
other items in the user’s history (5a). This leaks future infor-

mation and ignores any asymmetric consumption patterns.
In contrast, we “rollback” a user’s history by choosing a ran-
dom watch and only input actions the user took before the
held-out label watch (5b).

3.5 Experiments with Features and Depth
Adding features and depth significantly improves preci-

sion on holdout data as shown in Figure 6. In these exper-
iments, a vocabulary of 1M videos and 1M search tokens
were embedded with 256 floats each in a maximum bag size
of 50 recent watches and 50 recent searches. The softmax
layer outputs a multinomial distribution over the same 1M
video classes with a dimension of 256 (which can be thought
of as a separate output video embedding). These models
were trained until convergence over all YouTube users, corre-
sponding to several epochs over the data. Network structure
followed a common “tower” pattern in which the bottom of
the network is widest and each successive hidden layer halves
the number of units (similar to Figure 3). The depth zero
network is effectively a linear factorization scheme which

watch history

search history time

label
network inputsnetwork inputs

(a) Predicting held-out watch

network inputs label

watch history

search history time

(b) Predicting future watch

Figure 5: Choosing labels and input context to the model is challenging to evaluate offline but has a large
impact on live performance. Here, solid events • are input features to the network while hollow events ◦ are
excluded. We found predicting a future watch (5b) performed better in A/B testing. In (5b), the example
age is expressed as tmax − tN where tmax is the maximum observed time in the training data.

performed very similarly to the predecessor system. Width
and depth were added until the incremental benefit dimin-
ished and convergence became difficult:

• Depth 0: A linear layer simply transforms the concate-
nation layer to match the softmax dimension of 256

• Depth 1: 256 ReLU

• Depth 2: 512 ReLU → 256 ReLU

• Depth 3: 1024 ReLU → 512 ReLU → 256 ReLU

• Depth 4: 2048 ReLU → 1024 ReLU → 512 ReLU →
256 ReLU

0 1 2 3 4

Network Depth

0

2

4

6

8

10

12

14

H
o
ld

o
u
t

M
A

P
 %

Watches Only

Watches & Searches

Watches, Searches & Example Age

All Features

Figure 6: Features beyond video embeddings im-
prove holdout Mean Average Precision (MAP) and
layers of depth add expressiveness so that the model
can effectively use these additional features by mod-
eling their interaction.

4. RANKING
The primary role of ranking is to use impression data to

specialize and calibrate candidate predictions for the partic-
ular user interface. For example, a user may watch a given

video with high probability generally but is unlikely to click
on the specific homepage impression due to the choice of
thumbnail image. During ranking, we have access to many
more features describing the video and the user’s relation-
ship to the video because only a few hundred videos are
being scored rather than the millions scored in candidate
generation. Ranking is also crucial for ensembling different
candidate sources whose scores are not directly comparable.

We use a deep neural network with similar architecture as
candidate generation to assign an independent score to each
video impression using logistic regression (Figure 7). The
list of videos is then sorted by this score and returned to the
user. Our final ranking objective is constantly being tuned
based on live A/B testing results but is generally a simple
function of expected watch time per impression. Ranking
by click-through rate often promotes deceptive videos that
the user does not complete (“clickbait”) whereas watch time
better captures engagement [13, 25].

4.1 Feature Representation
Our features are segregated with the traditional taxonomy

of categorical and continuous/ordinal features. The categor-
ical features we use vary widely in their cardinality - some
are binary (e.g. whether the user is logged-in) while others
have millions of possible values (e.g. the user’s last search
query). Features are further split according to whether they
contribute only a single value (“univalent”) or a set of values
(“multivalent”). An example of a univalent categorical fea-
ture is the video ID of the impression being scored, while a
corresponding multivalent feature might be a bag of the last
N video IDs the user has watched. We also classify features
according to whether they describe properties of the item
(“impression”) or properties of the user/context (“query”).
Query features are computed once per request while impres-
sion features are computed for each item scored.

Feature Engineering
We typically use hundreds of features in our ranking mod-
els, roughly split evenly between categorical and continu-
ous. Despite the promise of deep learning to alleviate the
burden of engineering features by hand, the nature of our
raw data does not easily lend itself to be input directly into
feedforward neural networks. We still expend considerable

logistic

language
average

normalize
normalize

ReLU

ReLU

ReLU

serving training

embedding

video languageuser language

video
embedding

watched video IDsimpression video ID
time since
last watch

previous
impressions

weighted

Figure 7: Deep ranking network architecture depicting embedded categorical features (both univalent and
multivalent) with shared embeddings and powers of normalized continuous features. All layers are fully
connected. In practice, hundreds of features are fed into the network.

engineering resources transforming user and video data into
useful features. The main challenge is in representing a tem-
poral sequence of user actions and how these actions relate
to the video impression being scored.

We observe that the most important signals are those that
describe a user’s previous interaction with the item itself and
other similar items, matching others’ experience in ranking
ads [7]. As an example, consider the user’s past history with
the channel that uploaded the video being scored - how many
videos has the user watched from this channel? When was
the last time the user watched a video on this topic? These
continuous features describing past user actions on related
items are particularly powerful because they generalize well
across disparate items. We have also found it crucial to
propagate information from candidate generation into rank-
ing in the form of features, e.g. which sources nominated
this video candidate? What scores did they assign?

Features describing the frequency of past video impres-
sions are also critical for introducing “churn” in recommen-
dations (successive requests do not return identical lists). If
a user was recently recommended a video but did not watch
it then the model will naturally demote this impression on
the next page load. Serving up-to-the-second impression
and watch history is an engineering feat onto itself outside
the scope of this paper, but is vital for producing responsive
recommendations.

Embedding Categorical Features
Similar to candidate generation, we use embeddings to map
sparse categorical features to dense representations suitable
for neural networks. Each unique ID space (“vocabulary”)

has a separate learned embedding with dimension that in-
creases approximately proportional to the logarithm of the
number of unique values. These vocabularies are simple
look-up tables built by passing over the data once before
training. Very large cardinality ID spaces (e.g. video IDs
or search query terms) are truncated by including only the
top N after sorting based on their frequency in clicked im-
pressions. Out-of-vocabulary values are simply mapped to
the zero embedding. As in candidate generation, multivalent
categorical feature embeddings are averaged before being fed
in to the network.

Importantly, categorical features in the same ID space also
share underlying emeddings. For example, there exists a sin-
gle global embedding of video IDs that many distinct fea-
tures use (video ID of the impression, last video ID watched
by the user, video ID that “seeded” the recommendation,
etc.). Despite the shared embedding, each feature is fed sep-
arately into the network so that the layers above can learn
specialized representations per feature. Sharing embeddings
is important for improving generalization, speeding up train-
ing and reducing memory requirements. The overwhelming
majority of model parameters are in these high-cardinality
embedding spaces - for example, one million IDs embedded
in a 32 dimensional space have 7 times more parameters
than fully connected layers 2048 units wide.

Normalizing Continuous Features
Neural networks are notoriously sensitive to the scaling and
distribution of their inputs [9] whereas alternative approaches
such as ensembles of decision trees are invariant to scaling
of individual features. We found that proper normalization

of continuous features was critical for convergence. A con-
tinuous feature x with distribution f is transformed to x̃ by
scaling the values such that the feature is equally distributed
in [0, 1) using the cumulative distribution, x̃ =

∫ x

−∞ df .
This integral is approximated with linear interpolation on
the quantiles of the feature values computed in a single pass
over the data before training begins.

In addition to the raw normalized feature x̃, we also input
powers x̃2 and

√
x̃, giving the network more expressive power

by allowing it to easily form super- and sub-linear functions
of the feature. Feeding powers of continuous features was
found to improve offline accuracy.

4.2 Modeling Expected Watch Time
Our goal is to predict expected watch time given training

examples that are either positive (the video impression was
clicked) or negative (the impression was not clicked). Pos-
itive examples are annotated with the amount of time the
user spent watching the video. To predict expected watch
time we use the technique of weighted logistic regression,
which was developed for this purpose.

The model is trained with logistic regression under cross-
entropy loss (Figure 7). However, the positive (clicked)
impressions are weighted by the observed watch time on
the video. Negative (unclicked) impressions all receive unit
weight. In this way, the odds learned by the logistic regres-

sion are
∑

Ti
N−k

where N is the number of training examples,
k is the number of positive impressions, and Ti is the watch
time of the ith impression. Assuming the fraction of pos-
itive impressions is small (which is true in our case), the
learned odds are approximately E[T](1 +P), where P is the
click probability and E[T] is the expected watch time of the
impression. Since P is small, this product is close to E[T].
For inference we use the exponential function ex as the fi-
nal activation function to produce these odds that closely
estimate expected watch time.

4.3 Experiments with Hidden Layers
Table 1 shows the results we obtained on next-day holdout

data with different hidden layer configurations. The value
shown for each configuration (“weighted, per-user loss”) was
obtained by considering both positive (clicked) and negative
(unclicked) impressions shown to a user on a single page.
We first score these two impressions with our model. If the
negative impression receives a higher score than the posi-
tive impression, then we consider the positive impression’s
watch time to be mispredicted watch time. Weighted, per-
user loss is then the total amount mispredicted watch time
as a fraction of total watch time over heldout impression
pairs.

These results show that increasing the width of hidden
layers improves results, as does increasing their depth. The
trade-off, however, is server CPU time needed for inference.
The configuration of a 1024-wide ReLU followed by a 512-
wide ReLU followed by a 256-wide ReLU gave us the best
results while enabling us to stay within our serving CPU
budget.

For the 1024→ 512→ 256 model we tried only feeding the
normalized continuous features without their powers, which
increased loss by 0.2%. With the same hidden layer con-
figuration, we also trained a model where positive and neg-
ative examples are weighted equally. Unsurprisingly, this
increased the watch time-weighted loss by a dramatic 4.1%.

Hidden layers
weighted,
per-user loss

None 41.6%
256 ReLU 36.9%
512 ReLU 36.7%
1024 ReLU 35.8%
512 ReLU → 256 ReLU 35.2%
1024 ReLU → 512 ReLU 34.7%
1024 ReLU → 512 ReLU → 256 ReLU 34.6%

Table 1: Effects of wider and deeper hidden ReLU
layers on watch time-weighted pairwise loss com-
puted on next-day holdout data.

5. CONCLUSIONS
We have described our deep neural network architecture

for recommending YouTube videos, split into two distinct
problems: candidate generation and ranking.

Our deep collaborative filtering model is able to effectively
assimilate many signals and model their interaction with lay-
ers of depth, outperforming previous matrix factorization
approaches used at YouTube [23]. There is more art than
science in selecting the surrogate problem for recommenda-
tions and we found classifying a future watch to perform well
on live metrics by capturing asymmetric co-watch behavior
and preventing leakage of future information. Withholding
discrimative signals from the classifier was also essential to
achieving good results - otherwise the model would overfit
the surrogate problem and not transfer well to the home-
page.

We demonstrated that using the age of the training exam-
ple as an input feature removes an inherent bias towards the
past and allows the model to represent the time-dependent
behavior of popular of videos. This improved offline holdout
precision results and increased the watch time dramatically
on recently uploaded videos in A/B testing.

Ranking is a more classical machine learning problem yet
our deep learning approach outperformed previous linear
and tree-based methods for watch time prediction. Recom-
mendation systems in particular benefit from specialized fea-
tures describing past user behavior with items. Deep neural
networks require special representations of categorical and
continuous features which we transform with embeddings
and quantile normalization, respectively. Layers of depth
were shown to effectively model non-linear interactions be-
tween hundreds of features.

Logistic regression was modified by weighting training ex-
amples with watch time for positive examples and unity for
negative examples, allowing us to learn odds that closely
model expected watch time. This approach performed much
better on watch-time weighted ranking evaluation metrics
compared to predicting click-through rate directly.

6. ACKNOWLEDGMENTS
The authors would like to thank Jim McFadden and Pranav

Khaitan for valuable guidance and support. Sujeet Bansal,
Shripad Thite and Radek Vingralek implemented key com-
ponents of the training and serving infrastructure. Chris
Berg and Trevor Walker contributed thoughtful discussion
and detailed feedback.

7. REFERENCES

[1] M. Abadi, A. Agarwal, P. Barham, E. Brevdo,
Z. Chen, C. Citro, G. S. Corrado, A. Davis, J. Dean,
M. Devin, S. Ghemawat, I. Goodfellow, A. Harp,
G. Irving, M. Isard, Y. Jia, R. Jozefowicz, L. Kaiser,
M. Kudlur, J. Levenberg, D. Mané, R. Monga,
S. Moore, D. Murray, C. Olah, M. Schuster, J. Shlens,
B. Steiner, I. Sutskever, K. Talwar, P. Tucker,
V. Vanhoucke, V. Vasudevan, F. Viégas, O. Vinyals,
P. Warden, M. Wattenberg, M. Wicke, Y. Yu, and
X. Zheng. TensorFlow: Large-scale machine learning
on heterogeneous systems, 2015. Software available
from tensorflow.org.

[2] X. Amatriain. Building industrial-scale real-world
recommender systems. In Proceedings of the Sixth
ACM Conference on Recommender Systems, RecSys
’12, pages 7–8, New York, NY, USA, 2012. ACM.

[3] J. Davidson, B. Liebald, J. Liu, P. Nandy,
T. Van Vleet, U. Gargi, S. Gupta, Y. He, M. Lambert,
B. Livingston, and D. Sampath. The youtube video
recommendation system. In Proceedings of the Fourth
ACM Conference on Recommender Systems, RecSys
’10, pages 293–296, New York, NY, USA, 2010. ACM.

[4] J. Dean, G. S. Corrado, R. Monga, K. Chen,
M. Devin, Q. V. Le, M. Z. Mao, M. Ranzato,
A. Senior, P. Tucker, K. Yang, and A. Y. Ng. Large
scale distributed deep networks. In NIPS, 2012.

[5] A. M. Elkahky, Y. Song, and X. He. A multi-view deep
learning approach for cross domain user modeling in
recommendation systems. In Proceedings of the 24th
International Conference on World Wide Web, WWW
’15, pages 278–288, New York, NY, USA, 2015. ACM.

[6] X. Glorot, A. Bordes, and Y. Bengio. Deep sparse
rectifier neural networks. In G. J. Gordon and D. B.
Dunson, editors, Proceedings of the Fourteenth
International Conference on Artificial Intelligence and
Statistics (AISTATS-11), volume 15, pages 315–323.
Journal of Machine Learning Research - Workshop
and Conference Proceedings, 2011.

[7] X. He, J. Pan, O. Jin, T. Xu, B. Liu, T. Xu, Y. Shi,
A. Atallah, R. Herbrich, S. Bowers, and J. Q. n.
Candela. Practical lessons from predicting clicks on
ads at facebook. In Proceedings of the Eighth
International Workshop on Data Mining for Online
Advertising, ADKDD’14, pages 5:1–5:9, New York,
NY, USA, 2014. ACM.

[8] W. Huang, Z. Wu, L. Chen, P. Mitra, and C. L. Giles.
A neural probabilistic model for context based citation
recommendation. In AAAI, pages 2404–2410, 2015.

[9] S. Ioffe and C. Szegedy. Batch normalization:
Accelerating deep network training by reducing
internal covariate shift. CoRR, abs/1502.03167, 2015.

[10] S. Jean, K. Cho, R. Memisevic, and Y. Bengio. On
using very large target vocabulary for neural machine
translation. CoRR, abs/1412.2007, 2014.

[11] L. Jiang, Y. Miao, Y. Yang, Z. Lan, and A. G.
Hauptmann. Viral video style: A closer look at viral
videos on youtube. In Proceedings of International
Conference on Multimedia Retrieval, ICMR ’14, pages
193:193–193:200, New York, NY, USA, 2014. ACM.

[12] T. Liu, A. W. Moore, A. Gray, and K. Yang. An

investigation of practical approximate nearest
neighbor algorithms. pages 825–832. MIT Press, 2004.

[13] E. Meyerson. Youtube now: Why we focus on watch
time. http://youtubecreator.blogspot.com/2012/08/
youtube-now-why-we-focus-on-watch-time.html.
Accessed: 2016-04-20.

[14] T. Mikolov, I. Sutskever, K. Chen, G. Corrado, and
J. Dean. Distributed representations of words and
phrases and their compositionality. CoRR,
abs/1310.4546, 2013.

[15] F. Morin and Y. Bengio. Hierarchical probabilistic

neural network language model. In AISTATSâĂŹ05,
pages 246–252, 2005.

[16] D. Oard and J. Kim. Implicit feedback for
recommender systems. In in Proceedings of the AAAI
Workshop on Recommender Systems, pages 81–83,
1998.

[17] K. J. Oh, W. J. Lee, C. G. Lim, and H. J. Choi.
Personalized news recommendation using classified
keywords to capture user preference. In 16th
International Conference on Advanced Communication
Technology, pages 1283–1287, Feb 2014.

[18] S. Sedhain, A. K. Menon, S. Sanner, and L. Xie.
Autorec: Autoencoders meet collaborative filtering. In
Proceedings of the 24th International Conference on
World Wide Web, WWW ’15 Companion, pages
111–112, New York, NY, USA, 2015. ACM.

[19] X. Su and T. M. Khoshgoftaar. A survey of
collaborative filtering techniques. Advances in
artificial intelligence, 2009:4, 2009.

[20] D. Tang, B. Qin, T. Liu, and Y. Yang. User modeling
with neural network for review rating prediction. In
Proc. IJCAI, pages 1340–1346, 2015.

[21] A. van den Oord, S. Dieleman, and B. Schrauwen.
Deep content-based music recommendation. In
C. J. C. Burges, L. Bottou, M. Welling,
Z. Ghahramani, and K. Q. Weinberger, editors,
Advances in Neural Information Processing Systems
26, pages 2643–2651. Curran Associates, Inc., 2013.

[22] H. Wang, N. Wang, and D.-Y. Yeung. Collaborative
deep learning for recommender systems. In Proceedings
of the 21th ACM SIGKDD International Conference
on Knowledge Discovery and Data Mining, KDD ’15,
pages 1235–1244, New York, NY, USA, 2015. ACM.

[23] J. Weston, S. Bengio, and N. Usunier. Wsabie: Scaling
up to large vocabulary image annotation. In
Proceedings of the International Joint Conference on
Artificial Intelligence, IJCAI, 2011.

[24] J. Weston, A. Makadia, and H. Yee. Label partitioning
for sublinear ranking. In S. Dasgupta and
D. Mcallester, editors, Proceedings of the 30th
International Conference on Machine Learning
(ICML-13), volume 28, pages 181–189. JMLR
Workshop and Conference Proceedings, May 2013.

[25] X. Yi, L. Hong, E. Zhong, N. N. Liu, and S. Rajan.
Beyond clicks: Dwell time for personalization. In
Proceedings of the 8th ACM Conference on
Recommender Systems, RecSys ’14, pages 113–120,
New York, NY, USA, 2014. ACM.

[26] Zayn. Pillowtalk.
https://www.youtube.com/watch?v=C 3d6GntKbk.

