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ABSTRACT

We present a new sequential decision model for adaptively allocating a fundraising campaign budget for a
non-profit organization such as the American Red Cross. The campaign outcome is related to a set of design
features using linear regression. We derive the first simulation allocation procedure for simultaneously
learning unknown regression parameters and unknown sampling noise. The large number of alternatives in
this problem makes it difficult to evaluate the value of information. We apply convex approximation with
a quantization procedure and derive a semidefinite programming relaxation to reduce the computational
complexity. Simulation experiments based on historical data demonstrate the efficient performance of the
approximation.

1 INTRODUCTION

The American Red Cross (ARC) and many other disaster relief organizations often encounter the problem
of retaining one-time “disaster donors”—people who have given their first donation in response to a major
disaster. Only 30% of these donors return to give a second time after their initial contribution. A critical
problem for the ARC is to motivate disaster donors to contribute to long-term operations and “post-disaster”
programs such as community disaster preparation or emergency response training.

In a typical disaster-donor retention campaign, the ARC sends an appeal for funds (usually a mailed
letter) to a segment of disaster donors. The appeal is designed using a combination of features related to
the letter format and contents, donor and campaign type, and the use of various gift items. The number
of possible designs is exponential in the number of features. The outcome is evaluated using the success
rate, defined as the proportion of mailings in a campaign that elicited a donation. The goal is to find the
best set of campaign attributes that maximize the success rate as quickly as possible, subject to constraints
on the number of campaigns that can be conducted.

Linear regression based on historical data has been used to estimate the effects of the campaign attributes
on the success rate (Ryzhov et al. 2013). The results of the estimation, however, are subject to change after
every new campaign output, which provides new information about the campaign designs. This potential
for information should be used as a criterion when designing the next campaign. The new outcome then
feeds back into the linear model and guides the next campaign design, thus forming an “action–feedback”
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loop. This learning problem possesses two important characteristics: 1) A single campaign outcome may
provide information about many other alternatives since different campaign designs can share a common
set of features; 2) The variance of the observed campaign success rates is unknown. Although the variance
can be estimated from historical data, an inaccurate estimate may bias the evaluation of new information.

Within the fundraising community, there exist numerous statistical models for predicting charitable
giving; one example is the Tobit model (Tobin 1958), which is widely used to estimate effects of donor
income or taxes on donations (see e.g. Lankford and Wyckoff 1991, Auten and Joulfaian 1996). Other
determinants that drive charitable donations have also been studied, including donor demographics (Jones
and Posnett 1991), prestige of the organization (Arnett et al. 2003) or certain behavioural factors (Fennis
et al. 2009). Generalized linear models have been used to model the effects of attributes of donors and
mailings on success rates of campaigns; see Bult et al. (1997) for a small-data analysis and Ryzhov et al.
(2013) for a large-scale analysis. Measurement models provide insights on decision and policy making; most
of them, however, fail to provide a real-time sequential decision model to guide fundraisers’ actions that has
the ability to dynamically adapt to new information. While various techniques from operations research—
dynamic programming, linear or non-linear programming—have been applied to for-profit marketing to
support sequential or non-sequential decisions on variables such as price, advertising expenditure or media
coverage (see e.g. Lilien et al. 1995, Leeflang and Wittink 2000 for introductions), less attention has been
given to developing mathematical models for sequential decision making in non-profit marketing.

In the ranking and selection (R&S) community, however, the problem of sequentially allocating
an information budget has been widely studied. The Bayesian approach to R&S, which assigns prior
distributions to unknown values, is the most relevant part of this literature for the present study; see Powell
and Ryzhov (2012) for a recent and comprehensive review. Such methods include the optimal computing
budget allocation (Chen et al. 1996) and the value of information procedure or VIP (Gupta and Miescke
1996). The VIP approach, based on an expected improvement criterion, allows one to handle correlated
beliefs, where a single new observation provides information about multiple alternatives (Qu et al. 2012).
Negoescu et al. (2011) shows how expected improvement can be used to learn in Bayesian linear regression,
but assumes a known sampling variance. We present a Bayesian learning model that integrates the ability
to handle linear regression together with the unknown-variance model of Chick et al. (2010). As a result,
we capture both the ability to model correlations between regression parameters and the ability to learn an
unknown sampling variance simultaneously with those parameters.

The best available algorithm for calculating expected improvement for correlated beliefs (Frazier et al.
2009) has prohibitively high computational complexity in the regression setting. We address this issue in
two ways. First, we derive an easier computation in the special case where two-way interaction attributes are
absent from the feature space. For more general cases, we apply a quantization procedure and approximate
the non-convex value of information by a convex function, and optimize this function using semidefinite
programming relaxations (Defourny et al. 2013). Thus, the present paper contributes to the literature on
non-profit marketing as well as optimal learning.

The paper is organized as follows. Section 2 discusses the the R&S problem and derives a KG policy
to allocate campaign budget. Section 3 describes our computational improvements to the implementation.
Section 4 presents numerical experiments on historical data. Section 5 concludes.

2 CAMPAIGN LEARNING MODEL

The campaign decision variables controlled by the ARC mainly fall into three categories: campaign types,
mailing designs, and donor segmentation. The campaign types indicate the basic style of the campaign and
the general type of donors being targeted, e.g., whether we are reaching out to recent disaster donors or
“converted” donors who regularly support the program. The mailing designs indicate detailed information
and various items contained in the mailing. The donor segmentation indicates more detailed categorizations
of the donors. Table 1 shows a full list of campaign attributes. We use 0 or 1 to denote the decision to
include or exclude a certain attribute. For example if the ARC decides to send a batch of mailings with
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Table 1: Decision variables in donor retention campaign

Category Name Description

Campaign Type

Acquisition for new acquired one-time disaster donors
Renewal for converted donors with direct appeals for a contribution
Cultivation for converted donors with newsletter-like mailings
Follow-up other intermittent mailings
Lapsed for donors who have not responded in the past 18 months

Mailing Design

Personalization inclusion of the donor’s name and address
Gift item supporter cards, mailing labels or a glowstick
Checkboxes suggested donation amount options
Stories disaster preparedness story or generic story
Online option option to donate online

Donor Segment
Recency the lapsed months since last donation (0-6, 7-12, etc)
Level the amount of last donation (low, median, high, etc)

an option (or “checkbox”) to donate $50, a gift card and a newsletter to donors who have given a small
amount within the past six months, we would set the corresponding attributes to 1. Statistical screening
analysis, based on over 8 million historical records of communications with donors, has identified a small
set of 10-20 key factors driving campaign success from the full list of features (Ryzhov et al. 2013).

2.1 Bayesian Learning

We let Φ = {ϕ ∈ {0,1}r|Aϕ = h} be the campaign decision space, where r is the number of features and
ϕ is a decision alternative consisting of 0s or 1s, whose vector form can be written as (ϕ0,ϕ1, . . . ,ϕr−1)

>.
The linear constraints Aϕ = h may come from the fact that there are interactive effects between attributes.
For example, the combined effect of a disaster preparedness story with the Renewal campaign type may
be greater than the sum of the individual effects. Then, if ϕi and ϕ j represent the respective decisions to
include a preparedness story and target the Renewal type, we will include an additional feature ϕk = ϕi×ϕ j.
The condition {ϕk = ϕi×ϕ j; ϕ� ∈ {0,1}} is equivalent to a set of linear constraints, given by

ϕk 6 ϕi,

ϕk 6 ϕ j,

ϕi +ϕ j−16 ϕk,

ϕ� ∈ {0,1}.

(1)

By adding slack variables, we can denote the constraints in (1) as Aϕ = h (see Section 3.2.2 for more
discussion).

We let K = |Φ|, which is the total number of alternatives. Notice that K depends exponentially on
r if all or most of the attributes are controllable by the decision maker. The budget limits us to conduct
N campaigns; at the nth stage we choose an alternative ϕn ∈ Φ. After the campaign a new success rate
yn+1 ∈ (0,1) is observed, and we model the outcome-attributes relationship using a linear regression model

η
n+1 = logit(yn+1) = (ϕn)>β + ε

n+1,

where β is an r-vector specifying the unknown coefficients of the campaign attributes, εn+1 is the measurement
noise of yn+1, and ‘logit’ stands for the link function logit(p) = log( p

1−p). Notice that the first component
of β denotes the intercept, so ϕn

0 = 1, which can also be included in Aϕ = h. We use a logit function to
map yn+1 from (0,1) to R, to allow the response to range anywhere on the real number line. We assume
{εn}N

n=1 are i.i.d. with normal distribution N(0, 1
ρ
), where ρ is the unknown precision parameter.
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We use a Bayesian prior to represent the organization’s beliefs about the effectiveness of different
campaigns. The number of possible campaigns is combinatorially large, but their performance is driven by
a small set of r parameters, as well as the unknown precision ρ . The ARC’s beliefs can thus be compactly
represented by a Bayesian prior on β and ρ . We use a normal-gamma prior, where the conditional
distribution (at stage n) of β given ρ is multivariate normal with mean θ n and covariance matrix 1

ρ
Σn, and

the marginal distribution of ρ is gamma with parameters an and bn:

β |ρ ∼ N(θ n,
1
ρ

Σ
n), ρ ∼ Γ(an,bn).

Lemma 1 The posterior distribution after sampling yn+1 is still normal-gamma with updated parameters

θ
n+1 = θ

n +
ηn+1− (ϕn)>θ n

1+(ϕn)>Σnϕn Σ
n
ϕ

n; (2)

Σ
n+1 = Σ

n− Σnϕn(ϕn)>Σn

1+(ϕn)>Σnϕn ; (3)

an+1 = an +
1
2

; (4)

bn+1 = bn +
(ηn+1− (ϕn)>θ n)2

2(1+(ϕn)>Σnϕn)
. (5)

After N campaigns we choose the alternative with the largest posterior mean. Our goal is to learn
efficiently by choosing a policy π for designing campaigns to maximize the expected value of the final
implementation decision. That is,

π
∗ = argsup

π∈Π

Eπ [max
ϕ∈Φ

(ϕ>θ
N)]. (6)

2.2 KGUP Algorithm

The knowledge gradient (KG) algorithm (or VIP procedure) is a one-step look-ahead policy that allocates
the simulation budget to alternatives that are believed to have the highest potential for improving the
expected reward. It solves a simpler form of problem (6), assuming that at each step of simulation we
only have one more observation to collect. We let F n be the σ -algebra generated by ϕ0, y1, ϕ1, y2, . . .,
ϕn−1, yn, i.e., all decisions and observations before stage n, and {F n}N

n=0 be the filtration consisting of
the sequence of σ -algebras. The KG quantity for choosing ψ ∈Φ at stage n is defined as

vKG,n
ψ = En

[
max
ϕ∈Φ

(ϕ>θ
n+1)|ϕn = ψ

]
−max

ϕ∈Φ
(ϕ>θ

n), (7)

where En[·] = E[·|F n], i.e., the conditional expectation taken with respect to F n.
To compute the KG quantity in (7), it is necessary to find the conditional distribution of θ n+1 given

F n and ϕn = ψ , which is also known as the predictive distribution. Notice from (2) that at stage n the
randomness in θ n+1 only comes from ηn+1. All other quantities in (2)-(5) are known at time n.
Lemma 2 The predictive distribution of ηn+1 given F n and ϕn = ψ is a univariate Student’s t-distribution
with mean ψ>θ n, variance bn(1+ψ>Σnψ)/an and 2an degrees of freedom:

η
n+1 ∼ t

(
2an,ψ>θ

n,
bn(1+ψ>Σnψ)

an

)
.
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By Lemma 2 we can use a standard Student’s t random variable Ts (with degrees of freedom s = 2an)
to represent ηn+1. We then use (2) to re-write θ n+1 as:

θ
n+1 = θ

n +Σ
n
ψ

√
bn

an (1+ψ>Σnψ)
Ts. (8)

Combining (7) and (8) we can derive a new formulation of the KG quantity, given by

vKG,n
ψ = En(max

ϕ∈Φ
pϕ +qϕ(ψ)Ts)−max

ϕ∈Φ
pϕ , (9)

where

pϕ = ϕ
>

θ
n and qϕ(ψ) = ϕ

>
Σ

n
ψ

√
bn

an (1+ψ>Σnψ)
. (10)

We sort the pairs {pϕ ,qϕ(ψ)}ϕ∈Φ and relabel them as {pi,qi}K
i=1, such that qi is in ascending order (see

Powell and Ryzhov 2012 section 5.3 for details). Notice that the quantity inside the expectation in (9) is
a piecewise linear function; we define ci =

pi−pi+1
qi+1−qi

as the set of “break-points” where the piecewise linear
function changes slopes, and then compute the KG quantity as

vKG,n
ψ =

K−1

∑
i=1

(qi+1(ψ)−qi(ψ))

(
s+ c2

i

s−1
gs(|ci|)−|ci|(1−Gs(|ci|))

)
, (11)

where gs(·) and Gs(·) are the pdf and cdf, respectively, of the standard Student’s t-distribution with s
degrees of freedom.

We define a new policy, called the Knowledge Gradient with Unknown Precision (KGUP), which
chooses its measurement decision by

ψ
KGUP,n = argmax

ψ∈Φ

vKG,n
ψ .

The KGUP policy extends the value of information approach to learn linear regression coefficients and
unknown measurement variance (or precision). The Bayesian prior distribution is more compact by placing
beliefs on the attributes rather than the alternatives. We are allowed to have uncertainty in our knowledge
about the variance and use new collected information to update our beliefs and reduce the uncertainty.

3 ALGORITHM IMPROVEMENT

The current algorithm for computing the KG quantity in (11) with fixed ψ has computational complexity
O(K logK), mostly due to the difficulty of finding the break-points; to find the largest KG quantity, we
need to loop over the whole decision space Φ for each ψ , which requires K iterations. Thus the overall
computational complexity is O(K2 logK) (Frazier et al. 2009). As K grows exponentially in the number of
attributes r, i.e., K ∼ 2r, the computational complexity in terms of r is O(r4r). In practice, the algorithm
might have difficulties in computing a single maximum of KG even for r = 15, which is a reasonable size
of the campaign decision space for the ARC.

Here we discuss two approaches for computing the KG quantity with lower computational complexity.
In case 1, we assume independent and additive campaign attributes and derive a direct calculation of KG
without requiring any break-point computation. In case 2, we exploit the more general situation where
combined effects between attributes are present and use convex approximation and SDP relaxation to
improve the computational efficiency.
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3.1 The KGUP2 Algorithm for Independent Attributes

We assume all the campaign attributes have independent, linear and additive effects on the transformed
campaign outcome, and the linear inequalities Aϕ = h confining the decision space Φ only consist of
ϕ0 = 1. In this case, all the attributes are directly controllable except the first term (the intercept), thus
K = 2r−1. We take advantage of the fact that all decision variables in our problem are binary. Recalling
that θ n = (θ n

0 ,θ
n
1 , . . . ,θ

n
r−1)

>, and Enθ n+1 = θ n, we can re-write (7) as

vKG,n
ψ = En

[
∑
j≥1

(θ n+1
j )+|ϕn = ψ

]
−∑

j≥1
(θ n

j )
+. (12)

We define un
j(ψ) = (Σn

j·)
>ψ

√
bn

an(1+ψ>Σnψ)
, and use (8) and (12) to obtain

vKG,n
ψ = ∑

j≥1,un
j 6=0

θ
n
j Gs

(
|

θ n
j

un
j(ψ)
|

)
+

s(un
j(ψ))2 +(θ n

j )
2

(s−1)|un
j(ψ)|

gv

(
(

θ n
j

un
j(ψ)

)2

)
− (θ n

j )
+ (s > 1).

This is a direct calculation of the KG quantity requiring no additional calculation of the break-points
or sorting; to find the maximum of KG we need K iterations to search over the whole decision space,
thus the overall computational complexity is O(K). The KGUP2 algorithm has a dramatic improvement
in efficiency compared to the algorithm in Section 2.2., although K may still be quite large. The main
advantage is obtained by considering the special binary structure of the problem.

3.2 The KGUP3 Algorithm for General Cases

The derivation of the KGUP2 algorithm assumes that every feature is directly controllable by the decision-
maker, that is, any combination of 0s and 1s is allowed. However, this is usually not the case in non-profit
fundraising, because the regression model includes interactions between attributes, as discussed in Section
2.1. We let r1 be the number of directly controllable features, r2 be the number of two-way interaction
features (by our choice), thus r = 1+ r1 + r2, where the additional 1 indicates the intercept.

In this case, we first apply a quantization procedure to approximate the infinite-dimensional optimization
problem by a finite problem, and then approximate the finite non-convex problem using a convex relaxation
based on semidefinite programming. The new problem can be solved by interior point methods, which
have polynomial time complexity in r (Boyd and Vandenberghe 2004).

3.2.1 Finite Approximation

Note that the second term of the KG quantity in (9) is independent of ψ , and the decision made by the
KGUP policy ψKGUP,n only depends on the first term. Thus for convenience we omit the second term and
redefine

vKG,n
ψ = En( f (Ts)), (13)

where f (t) = max
ϕ∈Φ

pϕ +qϕ(ψ)t. For fixed pϕ and qϕ(ψ), the function pϕ +qϕ(ψ)t is linear in t, and thus

convex in t. The maximum over a finite family of convex function is still convex, thus f (t) is convex in t.
The Voronoi quantizer for Ts is the function qvor: R→{t1, . . . , tM} defined as

qvor(Ts) = ∑
k

tk1C(tk)(Ts),

where {C(tk)}1≤k≤M is a Borel partition of R with C(tk) = {t ∈R||t− tk| ≤ |t− t j|, j = 1, . . . ,M}. For one-
dimensional and unimodal random variable Ts and fixed M, there exists a unique qvor(·) and corresponding
sequence tM = {tk}1≤k≤M that minimize the quadratic quantization error (Graf and Luschgy 2000)
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DTs,2
M = E|Ts−qvor(Ts)|2 =

∫
R

min
k
|tk− t|2gs(t)dt.

By finding the quantization sequence tM that minimizes DTs,2
M , we can approximate the KG quantity in (13)

by

v̂M =
M

∑
k=1

wk f (tk), (14)

where wk =Gs(
tk+tk+1

2 )−Gs(
tk−1+tk

2 ), with the convention t0 =−∞ and tM+1 =∞. Newton’s method has been
used to compute the quantization sequence for several distributions such as standard normal distribution
(Pages and Printems 2003). Here we use a similar approach to find the quantization sequence for Ts.

3.2.2 Semidefinite Programming

By (10), (14) and the definition of f we have

max
ψ∈Φ

v̂M = max
ψ∈Φ

max
{ϕk∈Φ}1≤k≤M

M

∑
k=1

wk(ϕ
k)>(θ n +Σ

ntkdn
ψ),

where dn
ψ = ψ√

an
bn (1+ψ>Σnψ)

.

Lemma 3 Define

Ck =
1
2

 0 (θ n)> 0>

θ n 0 tkΣn

0 tkΣn 0

, Zk =

 1
ϕk

dn
ψ

 1
ϕk

dn
ψ

> =

 Z11
k Z1ϕ

k Z1d
k

Zϕ1
k Zϕϕ

k Zϕd
k

Zd1
k Zdϕ

k Zdd
k

 .
Then,

max
ψ∈Φ

v̂M = max
ψ∈Φ

max
{ϕk∈Φ}1≤k≤M

M

∑
k=1

wktrace(CkZk). (15)

We observe that Ck is a constant matrix and Zk is a positive semidefinite matrix with rank 1, for all
k ∈ {1, . . . ,M}. This problem is similar to SDP but has non-linear constraints consisting of: 1) the rank 1
constraint on Zk; 2) the binary constraints on ψ and ϕk,i.e., ψ,ϕk ∈ {0,1}r; 3) the non-linear constraints on
dn

ψ transformed from ψ . To formulate (15) as an SDP problem, we need to relax the non-linear constraints
using a set of linear constraints. We first drop the rank 1 constraint on Zk, then relax the binary constraints
on ψ and ϕk as ψ,ϕk ∈ [0,1]r, and finally develop a set of linear constraints on dn

ψ from Aψ = h.
The constraints on ψ include the conditions in (1) and ψ0 = 1. We transform the inequalities in (1) to

equalities by adding slack variables ς ∈ {0,1}r3 . For convenience we abuse the notation a little and still
denote the extended vector [ψ;ς ] as ψ and [ϕk;ς k] as ϕk. Here r = 1+r1+r2+r3, which correspond to the
intercept, the independent variables, the two-way interaction variables and the slack variables respectively.

By Aψ = h, we have ψ>A>Aψ = h>h. Thus

dn
ψ =

ψ√
ψ>(an

bn (
A>A
h>h +Σn))ψ

=
ψ√

ψ>Pψ
,

where P = an

bn (
A>A
h>h +Σn). It follows that (dn

ψ)
>Pdn

ψ = 1. We define Y = dn
ψ(d

n
ψ)
>, whence the condition is

equivalent to

trace(PY ) = 1. (16)

23



Han, Ryzhov, and Defourny

By definition, Y is symmetric and positive semidefinite, and we also require Y to be non-negative:

Yi, j ≥ 0,∀1≤ i, j ≤ r. (17)

To bound from above the elements of the semidefinite matrix Y , we define δ = min
ψ∈[0,1]r,Aψ=h

ψ>Pψ and

obtain

diag(Y )≤ 1r/δ , (18)

with the convention that there is no upper bound if δ = 0. The quantity δ can be easily found by solving
a small quadratic program with linear constraints, using a convex programming solver.

Following Defourny et al. (2013), we add another constraint on ϕ that can strengthen the relaxations.
Given ξ ∈ Rr with ξi > 0 for each i, we define ζ = supϕ∈Φ ξ>ϕ . Then for any ϕ ∈Φ we have

ϕϕ
> � ζ Diag(ϕ)Diag(ξ )−1, (19)

where Diag(z) denotes the diagonal matrix with elements zi. The value of ζ can be found by solving a
small IP problem. If the IP cannot be solved to optimality, the best found upper bound on ζ should be
used.

Combining (16), (17), (18), (19) and the linear constraints on ϕk, we formulate (15) as the SDP problem:

max
M

∑
k=1

wktrace(CkZk)

s.t. ∀k : Zk � 0,

Z11
k = 1, AZϕ1

k = h, 0≤ Zϕ1
k ≤ 1,

AZϕϕ

k A> = hh>, [Zϕϕ

k ]i, j ≥ 0, ∀0≤ i, j ≤ r,

Zϕϕ

k � ζ Diag(Zϕ1
k )Diag(ξ )−1,

Zdd
k = Y, Yi, j ≥ 0, ∀1≤ i, j ≤ r,

trace(PY ) = 1, diag(Y )≤ 1r/δ .

After solving this SDP, we obtain the matrix Y . With rank(Y ) = 1,
dn

ψ

||dn
ψ || is equivalent to the unique

normalized eigenvector of Y . After relaxing the condition, we can approximate
dn

ψ

||dn
ψ || by the normalized

eigenvector associated to the largest eigenvalue of Y . We define the eigenvector as v and let ṽ = v
max j(v j)

,
which satisfies ṽ∈ [0,1]r. Since ψ and dn

ψ only differ by a scaling factor, we can interpret ṽ as the fractional
approximation for the binary ψ ∈ {0,1}r. To recover a binary ψ we can perform a rounding procedure by
solving the small IP given by

min 1>r z

s.t. ψ− ṽ≤ z,

ṽ−ψ ≤ z,

Aψ = h, ψ ∈ {0,1}r,

where we project the solution ṽ on the set {0,1}r, by minimizing the L1 norm of the difference between
ψ and ṽ.
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4 NUMERICAL EXPERIMENTS

We simulate the performance of the KGUP policy using campaign historical data obtained from the ARC,
which covers 8.6 million interactions and 1.2 million unique donors. The data are aggregated into 952 unique
campaign designs, from which the linear regression coefficients and covariance matrix have been estimated
(Ryzhov et al. 2013). We use the estimations as the initial prior for β , i.e., θ 0 and Σ0. We experiment with
different values (a0, b0) to represent different beliefs about ρ . In each of L sample runs, the “true” value of ρ

is generated from ρ ∼ Γ(a0,b0) and the “true” value of β is generated from β ∼N(θ 0, 1
ρ

Σ0). The algorithms
do not see the true values when making decisions. We conduct N measurements with each policy; in the
(n+1)th measurement, the observation ηn+1

π for each policy π is simulated by ηn+1
π ∼ N((ψn

π)
>β , 1

ρ
).

The first experiment examines the performances of the KGUP policy, the correlated KG (CKG) policy
(Frazier et al. 2009) and the greedy policy. The CKG policy assumes the variance is known and maintains
the belief through the entire learning process. We let CKG start with the assumption that ρ = a0

b0 , whereas
KGUP assumes that ρ ∼ Γ(a0,b0). The greedy policy chooses the alternative ψ = argmaxϕ∈Φ ϕ>θ n and
updates the beliefs according to (2) and (3). We select 10 features from the set of key factors described in
Table 1, where the first 9 are directly controllable features, and the last one is an interaction feature. Thus
r1 = 9, r2 = 1 and K = 2r1 = 512. We set L = 100, N = 20. The ability of learning the unknown mean is
quantified by the normalized opportunity cost Cn

π for each measurement n and policy π , defined by

Cn
π =

maxϕ∈Φ ϕ>β − (argmaxψ∈Φ ψ>θ n
π )
>β

maxϕ,ψ∈Φ(ϕ>β −ψ>β )
. (20)

The denominator in (20) confines Cn
π in [0,1]. The ability of learning the unknown variance is quantified

by the precision estimation error, defined as |ρ− an

bn |.
Figures 1(a)-1(c) show how performance values change over the number of measurements with different

settings for (a0, b0). The graph is plotted with mean values plus or minus 2 standard deviations. The KGUP
policy outperforms CKG by a statistically significant amount when the mean of the true measurement
precision, i.e., a0

b0 is small (Figure 1(b) and 1(c)), and performs competitively against CKG when the mean
is large (Figure 1(a)). We conjecture that this behaviour arises because, when the true precision is small,
the true β tends to be far from the prior, in which case the CKG policy is more sensitive to an inaccurate
precision value. Figure 1(d) shows how the error of estimation on ρ decreases for the KGUP policy. We
see that the KGUP policy can learn the precision rapidly in the first few measurements, while the CKG
policy maintains the initial error invariably.

In the second experiment we test the performance of the KGUP3 algorithm with 2 different problem
sizes. The smaller problem has the same features as in experiment 1, with K = 512; the larger problem
has 3 extra independent features and 3 extra interaction features, and consequently r1 = 12, r2 = 4 and
K = 4096. The prior for ρ is set as a0 = 0.5, b0 = 1. We let L = 50 and N = 10. Figure 2 shows that the
KGUP3 policy outperforms the CKG policy and the greedy policy in both problems, indicating that the
KGUP3 policy provides a comparatively good approximation to the KGUP policy in learning the unknown
coefficients.

To further test the accuracy of the approximation in more general settings, we randomly generated 100
priors for β using θ 0 ∼N(0r, Ir×r) and Σ0 = (s+s>)(s+s>), where si, j ∼N(0,1),∀1≤ i, j≤ r. Otherwise,
the problem remains the same as in the earlier experiment. For each of these 100 priors, we compute
the approximate value of information using KGUP3 (or CKG) and find the alternative ϕ ′ that maximizes
this quantity. We then rank the alternatives according to their true values of information (computed by
KGUP) and see how highly ϕ ′ places in that ranking. Figure 3(a) shows that KGUP3 produces a better
approximation to the KGUP policy than CKG. Over 50% of the alternatives chosen by KGUP3 have values
of information ranked in the top 50 (out of 512).

To test the computational complexity of the KGUP3 algorithm with different problem sizes, we use the
same setting as above but each time increase the number of independent features by 1. We record the CPU
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(a) Learning the regression coefficients, a0 = 10, b0 = 1 (b) Learning the regression coefficients, a0 = 1, b0 = 10

(c) Learning the regression coefficients, a0 = 0.5, b0 = 1 (d) Learning the unknown variance, a0 = 0.5, b0 = 1

Figure 1: Averaged opportunity cost and precision estimation error over time.

time lapsed for one run of the policy, averaged over 10 samples. Figure 3(b) shows that the computational
complexity of the KGUP algorithm increases exponentially as r (linear increase in logarithm), while the
computing time for KGUP3 algorithm remains steady after 214 alternatives. This indicates that the KGUP3
algorithm is much more efficient than the KGUP algorithm when the number of alternatives is large.

5 CONCLUSION

We have proposed an optimal learning framework for non-profit campaign design and marketing, with
the ability to simultaneously learn the regression coefficients and measurement precision. Experimental
results suggest that this approach adds the most value when the true precision is small and the prior beliefs
about the coefficients are far from the true values. We also provide two improved algorithms with higher
computational efficiency for problems with large numbers of alternatives. We believe that our work offers
a rigorous mathematical model for non-profit sequential decision making, and provides a new approach to
optimal learning problems with linear regression structure, unknown variance and large decision space.
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(a) Learn the regression coefficients, N = 512 (b) Learn the regression coefficients, N = 4096

Figure 2: Averaged opportunity cost over time.

(a) Empirical distributions of value of information ranks (b) Averaged log2(CPU time) for 1 run of the policy

Figure 3: Accuracy and efficiency assessment of KGUP3 using simulated prior for β .
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